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The thermodynamic properties of both free and weakly interacting gases of independent g bosons
(4, AP+—qu+ A, =1, [Af,AE ]=0, ¢ >1) with a gap in the frequency spectrum are considered.
Even for g slightly exceeding 1, the g Bose gas behaves as a Fermi gas rather than a Bose gas: for small
values of the temperature the distribution function consists of a finite number of the Fermi “steps.” The
main thermodynamic characteristics (pressure, specific heat, etc.) are evaluated for three- and two-
dimensional cases. New physical effects such as “stepped” behavior of the specific heat of a two-
dimensional g Bose gas, phase separation of the ground state of the interacting gas, and an increase of
the effective mass of quasifermion states at large concentrations are predicted.

PACS number(s): 05.30.Ch, 05.30.Fk, 05.30.Jp, 05.70.Ce

I. INTRODUCTION

Although many objects constructed from g bosons and
q oscillators were intensively studied from both
mathematical [1] and physical [2] points of view, the
search for real physical systems with g bosons remains of
great interest up to now. In this respect, it is interesting
to investigate statistical properties of ¢ bosons to com-
pare them with those of various systems.

In earlier papers [3,4], statistical properties of nonin-
teracting g bosons were considered, whereas the g-
deformed Einstein-Planck distribution was studied in [5].
Following this direction we will study the behavior of
both a noninteracting and an interacting g Bose gas with
a gap in the frequency spectrum. On the basis of the
canonical statistical distribution we will find the main
thermodynamical properties which appear to be drasti-
cally different from those of ordinary bosons.

The present paper deals with g bosons considered as
particles with corresponding operators: annihilation 4,
and creation A4 p+ (p denotes the mode label), defined (to-
gether with the number operators N, ) using the commu-
tation relations [6,7]:

(47,4, 1=8,,[1+(g—1A4, 4,], ¢>1 (Lla)

[N, 4,7 1=F8,, 4,7, (1.1b)

where the number operator N, can be expressed through

?
A‘p as

N,=log,[1+(g—1)4," 4,7 ] (1.10)

(mainly in the present paper we will consider the case
g—1<<1). When g—1, (1.1) becomes the usual oscilla-
tor algebra. The operator of the total number of particles

N=3N, (1.2)
p

commutes with the Hamiltonian of noninteracting g bo-
sons
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Hy=30Q,4, 4, . (1.3)
p

In what follows we will assume that the frequency spec-
trum has the gap Q,

Q,20,>0. (1.4)
As will be shown below, such a choice of frequency spec-
trum leads to nontrivial physical consequences.

It follows from (1.1c) that the Hamiltonian (1.3) is a
nonlinear function of N,

x_
Hy=3 Q,[N,], , where [x]qzi’q—:Tl, (1.5)
P

where, in the limiting case, g —1 turns into the one for
the usual bosons

Hy=3 Q,N,
p

Our choice of g >1 is stipulated by the fact that for
|gl <1 the energy spectrum of the g oscillator contains a
continuous part [8,9] and the number operator cannot be
correctly defined in this case.

II. STATISTICS OF NONINTERACTING ¢ BOSONS

To study the thermodynamic properties of systems de-
scribed by the Hamiltonian (1.3) we have to average cor-
responding values with the canonical distribution

w=2Z 'exp[(uN—H,)/T]
=Z '[[ expl(uN,—Q, 4,5 4,7)/T],

p

where pu is the chemical
Z=Trexp[(uN—H,)/T].
To start with, we calculate the mean number of g bo-

sons (mean occupation number) in the pth mode,

potential,  and

97 ©1994 The American Physical Society



98 I. M. LUTZENKO AND A. S. ZHEDANOV 50

n,=(N,)=Z " 'Tr{N,exp[(uN —H,)/T1]}

= 3 Lexp({uL—Q,[L],}/T) Lgoexp({yL—Qp[L]q}/T)

L=0

[the expression for the Hamiltonian in terms of N, (1.5)
has been used].
Even though n, cannot be presented in explicit form,

its asymptotic expression for low temperatures
T<<ulg—1) 2.2)

can be obtained.
In the limit T—0 it is easy to find the occupation num-
ber in the ground state,

n,=0 if Q,>u,
n,=1 ifug~'<Q,<p,

n,=L if,uq“"<(217 <ugq Ll
This distribution can be rewritten as

n,=f( Q) =[1+log,(u/Q,)10(—10,), 23

where the square brackets denote the integer part and

0 if x<0

0x)=11 ifx>0.

The distribution (2.3) can be easily obtained by direct
minimization of the sum (1.5) under the condition
N =const.

From (1.5) and (2.3) we obtain that n, changes in the
ranges

0=n,=f(Qqpu) .

The expression in (2.3) may be interpreted as a “mul-
tistepped” analog of the Fermi-Dirac distribution at
T =0 (see Fig. 1), which appears due to the gap in the

3.00

2.00

1.00

-3.00 . . . 1

* logy(0p/12)

FIG. 1. The distribution functions for T=0 and
T,=0.05u(qg —1) (dashed line). The distribution for T, has
been obtained by numerical calculations (¢ =1.01) from Eq.
(2.1.

[

frequency spectrum and the nonlinearity of the Hamil-
tonian. Nevertheless in the limiting case ¢ —1 we will re-
turn to the ordinary Bose-Einstein distribution at T'=0,
when all the bosons are collected in the mode with
=9, (see the next section). The same result takes place
if Q,—0.

The mean occupation number at low temperatures (2.2)
is obtained by an approximation of (2.1) in the neighbor-
hood of the frontiers of “steps,” i.e., when

—, M
Q,=pqg "+5 .
Replacing L in (2.1) with L =N + M we easily obtain

S Nexpl{uN—(u+8g*)[N],}/T)
N=—M

np=M+ ”
S exp({uN—(u+8¢™)[N],}/T)
N=—-M

(2.4)

First, we estimate the denominator of this equation

©

S exp({uN—(u+8¢™[N],}/T)
N=-M
—1 M ©
cee d14e 8 T/Ty 2 cee
N=—M N=2
We readily estimate the two remaining sums using the
series expansion of [N],,

N—[N]q=—££%:&(q—l)+--- ;g —1<1
and we find
_21 +§ ...=0(e“u(q—l)/T).
=—M N=2
Therefore

o

S exp( {uN——(;H—SqM)[N]q}/T)
N=—M

=l+e—5qM/T+0(e'*/A(q—l)/T) .

The numerator of Eq. (2.4) can be estimated in an analo-
gous way:

S Nexp({uN—(u+8g*)[N],}/T)
N=—M

=e —5qM/T+0(e —mg—1/Ty
Thus, due to (2.2), one obtains the expansion of ny,,
e—SqM/T+0(e —nulg—1)/T)
14+e —BqM/T+O(e—u(q‘—l)/T)

1
%M/ 41

np=M+
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Combining these expansions for 0 <M < « we get the
final formula for ny,

<«

n,=3 {exp[(Q,q°—p)/T]+1}7", (2.5)
L=0
which reduces to (2.3) when T=0.
It is worth mentioning that in the situation when
n<qQy, (2.6

f(Qpn)=1 (2, <Q,), the distribution in (2.5) [of course
at temperatures (2.2) when all terms with L >0 can be
neglected in (2.5)] becomes a standard Fermi-Dirac distri-
bution:

J

n,={exp[(Q, —p)/T1+1}7". 2.7)

Although the g bosons do not obey the Pauli principle,
and any number of them could be in any mode, energetic
considerations lead to the distribution (2.7) [for a
sufficiently large value of Q,, see (2.6)], and consequently
in this case g bosons become thermodynamically nondis-
tinguishable from ordinary fermions.

To describe the behavior of a ¢ Bose gas, the value of
the total energy is needed,

e,,z(E,,)=éon,,[L]qexp{<pL—QP[L],,)/T} Li;oexp[(pL—Qp[L]q)/T} .

Similar to (2.1), the expressions in (2.8) can be evalu-
ated at low temperatures (2.2) in a similar manner,

F.p=L2_oqu"[exp[(Q‘,,q"—,u)/T)]_1 . 2.9)
One can also find an exact expression for the energy €, in
the ground state as a limiting case of (2.9) at T=0

&, =E,=Q,[f(Q,;p)], ,

where the function f (£2,;u) has been defined in (2.3).
Now we are ready to write the final expressions for the
total number of particles N and the total energy E. Intro-
ducing the density of states g({2) as a number of modes
with a frequency between () and Q+d(Q, we replace the
summations (2.8) and (1.2) with integrations as

N=fn:n(ﬂ)g(ﬂ)dﬂ

L

max _ 11’2T2 _ d
— G L + 2L g
Lzzo[ (ng~ ")+ ——q

dﬂ + .-

L

Q=pq~ _
(2.10)

and

E=fn°: e(Q)g(Q)dQ

Lmax
=3 {¢'Fpg™h
L=0
2
+”2_Tq—L a0g 4+ .. (2.11)
6 dQ Q=pqL
where

G()=[Jexax , F)=[ 'xgtx)dx ,
and (2.12)
Loox=f(Quu)—1.
It follows from (2.10) that the chemical potential at

E=Z 7 'Tr{Hjexp[(uN—H,)/T)}=3¢,, (2.8
P
where
[
zero temperature y, is a solution of the equation
(2.13)

N=T3 Glug ™D,
L=0

and the energy of the ground state is immediately ob-
tained from (2.11),

max

Ey=3 q'Flpyg™") . (2.14)
L=0
The value of the chemical potential at low tempera-
tures (2.2) can be calculated by its expansion in the neigh-
borhood of T =0:

172T2 a Lmnx _ _
(T)=py————— |In Lo Lyl+.-- .
7 P e B L2=‘,oq 8(pog
(2.15)

Finally, inserting (2.15) into the expression for the total
energy (2.11), one gets the specific heat C;, =(3E /3T)y
at a constant volume

L

max

T _ _
Cr="3-3 g "slug

L=0

Ly, (2.16)

and we see that, similar to the ordinary fermions, the
specific heat of a free g Bose gas is proportional to the
temperature [if the condition (2.2) takes place].

Similarity between the properties of a ¢ Bose and a
Fermi gas becomes especially apparent in the situation
(2.6), or as follows from (2.13) when

(2.17)

qno
N <G(gQo)= [ “glx)dx .
0

In this case, the formula (2.16) reduces to that for ordi-
nary fermions [10].

II1. “QUASIFERMION” STATES

In the beginning of this section we consider a free iso-
tropic ¢ deformed gas bounded by the volume V of a
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three-dimensional isotropic space. On the basis of the re-
sults obtained in the previous section we will deduce the
equation of state at the absolute zero temperature and
find the specific heat at low temperatures, restricting our
study by the physically relevant case of a small value of
the deformation parameter

w=Ing <<1. (3.1)

Let us consider the gas with p and m being the momen-
tum and mass of g bosons. Taking its dispersion law in
the form

2
Q, =0+ 3.2
L4 " 2m 32
from standard considerations in statistical mechanics
[10], we find the density of states as

1 dI' _

Q = —_ =
git) (2mfi)® dQ

- ’Z’ﬁs [2m¥ Q-] (3.3)
T

(here dT"=4mVp?dp is the volume in phase space).

Substitution of (3.3) into (2.13) yields the relation for
the concentration py, =N /V (number of bosons in the
unit volume of space)

L

max

S [2m(pg ~L—0Qy) 3" (3.4)
0

Pv= 61T2ﬁ3 L=

where L, is defined in (2.12).
To start with, consider the case

[(Quu)>1. (3.5)

The summation in (3.4) then can be replaced by the in-
tegration due to the small value of the deformation pa-
rameter (3.1). In such an approximation

_ 2m 00)3/2

Pv= 3T

23
— —z +arctan(z)

3 ) (3.6)

where the new parameter z is
2=[(p—00)/Q)"2 .

Ay
The energy of the system at 7'=0 can be expressed in
terms of z from (2.14) in a similar manner,

2m QO )5/2
= (3.7
0r“f'mo
From (2.16) one obtains specific heat at low temperatures
(2"’1 Qo )3/2 z 3
C,= 3 VT—; . (3.8)
18#°w ), z*+1

It is necessary to find z from the transcendental Eq. (3.6)
in order to express energy through concentration. Al-
though Eq. (3.6) is not exactly solvable, there are three
important cases: case (a),

z<w'’?, (3.9)
case (b)

w'?<«<z<<1,

case (c)
z>1,

when asymptotic [and in case (a) exact] expressions for
energy and pressure P= —(3E /dV) can be obtained in
explicit form. In case (a) the calculations can be carried
out exactly without approximation (3.5).

Consider these cases separately:

Case (a): z<w!’2. This case corresponds to “small”
concentrations of g bosons

(2mQuw)*”?
157°#°
One can easily verify that this condition [or condition
(3.9)] is equivalent to (2.17) or (2.6) and hence in this case
the g Bose gas is thermodynamically nondistinguishable
from a Fermi gas (these states of g Bose gas can be called
“quasifermion” ones).

Case (b): w!/?<<z << 1. This case corresponds to “in-
termediate’’ concentrations,

py < (3.10)

(2m Qqw)*"? (2mQq)*"? (3.11)
—— e <L Py KL . .
R PV IsrRe
From (3.6) and (3.7) we get the energy of the ground state
2
E=NQ, 1+i;—+---
5 [ 1570 |77
=NQ [1+2 | 222 | p25y ... (3.12)
T N ama | PV
and the equation of state at 7=0
I
P=2Q) | ———— 75 (3.13)
0 oma 2 | PY

One can see that in the limiting case ®=0 (¢ =1) the
condition (3.11) turns into

O<ppy<oo,

and the expressions (3.12) and (3.13) reduce to ones for
the ordinary Bose gas.

Case (c): z>>1. This case corresponds to “large” con-
centrations

(2mQ )
1570

For energy, pressure, and specific heat we have the ex-
pressions

py>> (3.14)

2
=Nt 32,y p=2E

10m* v’
CmN T
c,="Np| T
fi 3py

which coincide with those for fermions with the effective
mass

* m

=—— (3.15)
(3w)?”?
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and one can say that apart from case (a) the second type
of “quasifermion” (‘“heavy fermion”) states occurs at
“large” concentrations of g bosons. Note that an analo-
gous property takes place not only in the three-
dimensional space, but also in the space of arbitrary di-
mensions.

Thus substantial metamorphosis has occurred when
concentrations of g bosons change from 0 to «. There-
fore q bosons behave like fermions if the concentration
does not exceed some characteristic value [see (3.10)]. In
an intermediate region of p, the properties of a ¢ Bose
gas are different from both the usual Bose and Fermi
ones, and when p;— o, the gas again displays quasifer-
mion properties, but the effective mass m* of the new
quasifermions (heavy fermions) [see (3.15)] is different
from that of the g bosons. These regions can be roughly
illustrated by Fig. 2.

It is interesting to consider a two-dimensional gas with
the dispersion law (3.2) when the density of states is

1_dr _ mS
(2mh)? dQ  27#?
(here S denotes two-dimensional volume) and it does not

depend on the frequency. Then from (2.16) we have the
following expression for the specific heat:

g(Q)=

C=Co[f(Qup)], (3.16)
with
C.= TmST
e

It is seen from (3.16) and the definition of f (Qy;u) (2.3)
that specific heat exhibits jumps given by

AC,=Cyq~*

when

FIG. 2. Phase diagram of the ¢ Bose gas at T=0. q, quasi-
fermions; b, intermediate state; ¢, “heavy quasifermions;” and d,
ordinary Bose condensate.

c

-~ & T @
Cyctatsq2ug ou
co“"q—""q-z)"

c, (14q7 )T

2 i 1

9,9 0, 0,4

FIG. 3. Specific heat C of two-dimensional g Bose gas at low
temperatures.

p=uP=04%, L=1,23,... .

The concentration p is expressed in explicit form in
the two-dimensional situation. So we obtain from (2.13)
that the jumps of specific heat occur when

m{),

Py {{L+1],—L—1}

and the specific heat does not depend on concentration in
the intervals between p§-’ and p§* ™1 (or p'L and p'L 1),
i.e., Cis a “stepped” function of pg (see Fig. 3).

Strictly speaking, such a discontinuous character (3.16)
of C is due to the approximation (2.16). In fact, C is a
continuous function of the chemical potential u (or con-
centration pg), but the approximation (3.16) is valid ow-
ing to the fact that at low temperatures (2.2) jumps of the
specific heat (transition from the Lth “step” to the
L +1th one) take place in the very small intervals of the
chemical potential u'“’+8u (see Fig. 3), so that

Su o T

ps=pf'=

1.
,u(L'H)—[,t(L) ,u(q—-l)
In other words, the width of the “steps” 't +V—u'Y) (or
pE YV —pd)) is much more than the transition interval

SuxT (or 8p{), respectively). It is worth mentioning
that such “stepped” behavior of thermodynamic proper-
ties is a specific feature of two-dimensional fermion sys-
tems, recall, e.g., the quantum Hall effect [11].

IV. INTERACTING q BOSE GAS

Although the description of an interacting g Bose gas
is a rather difficult problem, we try to obtain a qualitative
picture of the behavior of the system at T=0 (ground
state) in the frame of the model considered in the preced-
ing section. We start with the situation when the concen-
tration of g bosons lies in the interval (3.11) (“intermedi-
ate” concentrations). Returning to the noninteracting g
Bose gas, let us rewrite expression (3.13) in the form

P=pVTeﬁ ) (41)

where the meaning of the “effective temperature”
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2/5

3
151T2'h @ pzy/s (4.2)

T =2 —_—
T 2mQy)?

is clarified if one calculates the mean kinetic energy per
particle,

(P%/2m ) =constT g . 4.3)

In other words, T is a measure of the mean kinetic en-
ergy of the g bosons in the ground state. Thus, the rela-
tions (4.1) and (4.3) have the form that coincides with
that for the usual theory of an ideal gas with temperature
T.s. Using this fact and supposing that there is a weak
attraction between g bosons, we can consider an interact-
ing g Bose gas in the ground state as a van der Waals gas
at temperature T ., and consequently for such a gas
Teﬂ' a

pP= -=,
v—b u2

(4.4)

where v =pj; ! plays the role of the volume per fixed parti-
cle, and a,b are the van der Waals constants [for nonin-
teracting gas a =b =0, we return to (4.1)].

A similar result can be deduced from perturbation
theory. Indeed, choosing the Hamiltonian in the form

H=H,+W,,

with the interacting part
1 _ -
Win="— W 2 Wk,p,s Ap+——k As_:—k Ap A,
k,p,s

we obtain the first-order approximation for the energy of
the ground state

E=E,+(0|W;,|0)

1

BT

S (Wo+W,

P»s

+ o4t 44—
ol4, 44, 47(0)

T5HPS

4.5)

(here |0) is the ground state of the noninteracting Hamil-
tonian and Wy=W ).

The perturbation theory is valid if the radius of in-
teraction 7 is much smaller than the mean distance be-
tween particles

ro<<pyl’?. (4.6)

Remembering that from the van der Waals theory [10]
it follows that b « r3, the condition (4.6) can be rewritten
in the form

v>>b . 4.7)

The radius of interaction in momentum space
—1 1/3
Po*To >>py

is much more than the maximal value of momentum of
noninteracting g bosons at the same concentration, and
therefore we may replace W,_;,, in (4.5) with W,.
Then, from (4.5) with due regard to (3.1), (3.5), (3.6), and
(1.1c), we obtain the formula for the pressure in this ap-
proach,

Teif WO

P=
v u2

(4.8)

from which we see that for v >>b expression (4.4) practi-
cally (within this approach) coincides with (4.8) and

a=W, .

Now, substituting (4.2) into (4.4) we obtain the final ex-
pression for pressure,

where x =v/b, 1 <x < o, and

200 2/5

W,

1577w
(2mQ,)*"?

The function P(x) behaves like a van der Waals iso-
therm. So if the value of R does not exceed the critical
one, R, =20.365, then P(x) has two extrema, and accord-
ing to the theory of phase transitions [10], in some inter-
val x;(R) <x <x,(R) phase separation takes place. Thus
due to the interplay between attraction by interacting and
repulsion by “nonbosonic” character of particles we ob-
tain phase separation in the ground state of the system.
The coexistence region x, —x; diminishes if the deforma-
tion parameter w and/or the interaction parameter W,
change so that R —R_, and goes to zero at the critical
point R ..

Note that for some values of @ and W, (4.8) has maxi-
ma when the condition of applicability of perturbation
theory (4.7) is carried out. Therefore instability
(3P /3V)> 0 appears for some concentrations already in
the frame of the expression (4.8) and phase separation
takes place even in this rough (without van der Waals ap-
proximation) approach.

Finally, in the situation when condition (3.10) takes
place and the noninteracting g bosons have occupation
number and energy distributions that coincide with those
for fermions, even small attraction with a large radius

ro>>py ' 4.9)

leads to substantial changes of the spectrum and pertur-
bation theory in its usual form becomes inappropriate.

V. CONCLUSIONS

It was the main purpose of this paper to study thermo-
dynamics and statistics of a ¢ Bose gas with a gap in the
frequency spectrum. Calculations of statistical properties
have resulted in expressions for the chemical potential,
specific heat at low temperatures, and an equation of
state at T=0. It was found that these properties are
quite different from those for both a Bose gas and a g
Bose one without a gap in the frequency spectrum.
Moreover in some situations the thermodynamic proper-
ties of such a gas are quite similar to those of a Fermi gas
than to a Bose gas, and as a consequence such a gas does
not undergo Bose concentration. This fact seems to be
unexpected because in earlier considerations ¢ Bose con-



densation was demonstrated [3,4]. Therefore we note the
two crucial points of our approach leading to this con-
clusion: (i) ¢ >1 and (ii) the existence of the gap in the
frequency spectrum of g bosons. It is interesting to note
that in our case > ), in contrast to the theory of the or-
dinary Bose gas [10], where only the condition u < (), is
valid.

Indeed, it has already been mentioned that if
1n<qQ,(g>1), then (2.7) takes place and g bosons
behave as true fermions. But according to the theory of
fermion systems [10] the condition p >, is carried out
at small values of temperature (and hence Bose condensa-
tion does not occur if 23>0). Such an unusual condition
is due to a strong convergence of the partition function Z
(2.1) even for ¢ —1<<1, whereas in the classical (¢ =1)
case the function Z diverges if u> Q, However, in the
case {),=0 the equation for the zero momentum state oc-
cupation number n, (p =0) [see (2.1)] coincides with that
for ordinary bosons and this state can be occupied by the
macroscopically large amount of g bosons. Thus, in con-
trast to our (Q,> 0) case, g bosons without a gap (2,=0)
can Bose condense even in two dimensions [4] due to
strong convergence of the partition function with p70
(i.e., 2,>0).

In a two-dimensional situation the specific heat is a
“stepped” function of concentrations (specific heat of a
two-dimensional g Bose gas has an infinite number of ex-
ponentially decreasing jumps when the concentration
changes from 0 to ).

An attempt to describe the interacting ¢ Bose gas with
a small deformation parameter has also been made in the
present paper. Having considered a g Bose gas with a
weak interaction in the volume ¥V of three-dimensional
space, we have obtained that phase separation may occur
in the ground state of the system when the deformation
parameter and the interaction parameters satisfy some
specific conditions.
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Note that conclusions of this paper [except for case (c)
in Sec. III] are valid for all the deformations of the basic
commutation relation

[A=,AT]=F(4747), F(x)=14wx+ -+, ©>0

because of small deformations (3.1) and relatively small
values of occupation numbers (1.1c)

wNp <1, F(x)=14+wx .

Our results can be generalized to the situation when the
deformation parameter depends on the mode label, i.e.,
q=4q(p) [or o=w(p)].

In conclusion, one can say that when the concentration
of g bosons is small enough (3.10) and the free ¢ Bose gas
has occupation numbers and energy distributions that
coincide with those for a Fermi gas, this situation might
be of interest in condensed matter [e.g., the hypothetical
q bosons with the dispersion law for an electron
(Qy=mc?=1 MeV) behave as true fermions even for
sufficiently small values of the deformation parameter
such as w=Ing=10"%; so the main statements of solid
state physics remain the same in spite of replacing elec-
trons with such g bosons]. In such a situation the attrac-
tion with the large radius (4.3) leads to substantial
changes in the spectrum of excitations of the system and
by analogy with the Fermi gas the question of whether a
gap is present or not in the spectrum of excitations of ¢
Bose gas appears to be crucial in this situation.
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